TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Proposição 1: Se é Contínua No Intervalo , Então Ela é Integrável Em . Geometricamente, Se Para , O Valor Desta Integral Definida Representa A área Delimitada Pela Curva , O Eixo , E As Ordenadas E . Se Se Torna Ora Positiva, Ora Negativ

Dissertações: Proposição 1: Se é Contínua No Intervalo , Então Ela é Integrável Em . Geometricamente, Se Para , O Valor Desta Integral Definida Representa A área Delimitada Pela Curva , O Eixo , E As Ordenadas E . Se Se Torna Ora Positiva, Ora Negativ. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  27/9/2014  •  365 Palavras (2 Páginas)  •  452 Visualizações

Página 1 de 2

representa a área sob o gráfico de de a . Analogamente, sendo , as integrais

representam as áreas sob o gráfico de de a e de a respectivamente. Sendo a área de a a soma das áreas menores, segue o resultado.

Teorema 4: Seja uma função integrável em . Se para todo em , então

Demonstração: Sendo integrável em , a integral definida não depende da forma que subdividimos o intervalo . Assim,

Sendo para todo , então para , donde segue o resultado.

Fonte:http://fatosmatematicos.blogspot.com.br/2011/11/integral-definida-conceitos-e.html

Integral Indefinida

Integração Indefinida

Sabemos que a derivada é um dos conceitos mais importantes do Cálculo. Outro conceito também muito importante é o de Integral. Existe uma estreita relação entre estas duas idéias. Assim, nesta seção, será introduzida a idéia de integral, mostrando sua relação com a derivada.

Se a função F(x) é primitiva da função f(x), a expressão F(x)+C é chamada integral indefinida da função f(x) e é denotada por

onde

− é chamado sinal de integração;

f(x) − é a função integrando;

dx – a diferencial que serve para identificar a variável de , integração;

C – é a constante de integração.

Lê-se: Integral indefinida de f(x) em relação a x ou simplesmente integral de f(x) em relação a x. O processo que permite encontrar a integral indefinida de uma função é chamado int Integrais indefinidas

Da mesma forma que a adição e a subtração, a multiplicação e a divisão, a operação inversa da derivação é a antiderivação ou integração indefinida.

Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).

Exemplos:

1. Se f(x) = , então é a derivada de f(x). Uma das antiderivadas de f'(x) = g(x) = x4 é .

2. Se f(x) = x3, então f'(x) = 3x2 = g(x). Uma das anti derivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3.

3. Se f(x) = x3 + 4, então f'(x) = 3x2 = g(x). Uma das anti derivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3 + 4.

...

Baixar como  txt (2.1 Kb)  
Continuar por mais 1 página »