TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Numero De Euler

Ensaios: Numero De Euler. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  10/2/2014  •  930 Palavras (4 Páginas)  •  453 Visualizações

Página 1 de 4

1 INTRODUÇÃO

O desígnio do trabalho é explicitar o número de Euler, instituído por Leonhard Euler um grandioso matemático, que desenvolveu cálculos em sua época os quais, de quão importantes, são empregados até o presente.

O número de Euler é uma constante matemática que engloba cálculos de nível superior, empregado, a título de exemplo, em: Cálculo de diferenciais e integradas.

2 O NÚMERO DE EULER

O número de Euler é assim chamado em homenagem ao matemático Suiço Leonhard Euler, é à base dos logaritmos naturais.

As variantes do nome do número incluem: número de Napier, constante de Néper, número neperiano, constante matemática e número exponencial, etc. A primeira referência à constante foi publicada em 1618 na tabela de um apêndice de um trabalho sobre logaritmos de John Napier. No entanto, este não contém a constante propriamente dita, mas apenas uma simples lista de logaritmos naturais calculados a partir desta. A primeira indicação da constante foi descoberta por JakobBernoulli, quando tentava encontrar um valor para a seguinte expressão (muito comum no cálculo de juros compostos):

E vale aproximadamente 2,718 281 828 459 045 235 360 287.

O número também pode ser escrito como a soma da série infinita:

Aqui n! representa o fatorial de n. Pode-se ainda definir e como sendo o único número x > 0 tal que:

O número e apresenta um interesse particular porque pode-se demonstrar que

Para todo real x, exp(x) = ex (e na potência x);

Assim, por exemplo, tem-se :

ou ainda

O número e é um número irracional e mesmo transcendente (como pi). A irracionalidade de e foi demonstrada porLambert em 1761 e mais tarde por Euler. A prova da transcendência de e foi estabelecida por Hermite em 1873.

Conjecturou-se que e é um número normal ou aleatório.

Ele aparece (com outras constantes fundamentais) na identidade de Euler :

O desenvolvimento da fração contínua de e pode ser escrito sob a forma interessante :

Leonhard Euler começou a usar a letra e para representar a constante em 1727, e o primeiro uso de e foi na publicação Euler’s Mechanica (1736). As verdadeiras razões para escolha da letra e são desconhecidas, mas talvez seja porque e seja a primeira letra da palavra exponencial.

Tem ainda a remarcável propriedade que a taxa de variação de ex no ponto x = t vale et daí sua importância no cálculo diferencial e integral, e seu papel único como base do logaritmo natural.

Ou ainda, se se escolherem números entre zero e 1 até que o seu total ultrapasse 1, o número mais provável de seleções será igual a e.

O Número de Euler com as primeiras 200 casas decimais:

2.1 Vida e obra

Nasceu em Basiléia, filho do pastor calvinista Paul Euler (lê-se "Óilã") e de Marguerite Brucker, filha de um pastor. Teve duas irmãs mais novas: Anna Maria e Maria Magdalena.

Pouco depois do seu nascimento, sua família mudou-se para a cidade de Riehen, onde passou a maior parte da sua infância. Desprezando seu prodigioso talento matemático, determinou que ele estudasse Teologia e seguiria a carreira religiosa. Paul Euler era um amigo da família Bernoulli, e Johann Bernoulli - que foi um dos matemáticos mais importantes da Europa - seria eventualmente uma influência no pequeno Euler.

A sua instrução formal adiantada começou na terra natal para onde foi mandado viver com a sua avó materna. Aos 14 anos matricula-se na Universidade da Basiléia, e em 1723, recebe o grau de Mestre em Filosofia com uma dissertação onde comparava Descartes com Newton. Nesta altura, já recebia, aos sábados à tarde, lições de Johann Bernoulli que rapidamente descobriu o seu talento para a matemática.

Euler nesta altura estudava teologia, grego e hebreu, pela vontade de seu pai para mais tarde se tornar pastor. Porém Johann Bernoulli resolveu intervir e convenceu Paul Euler que o seu filho estava destinado a ser um grande matemático.

Em 1726, Euler completou a sua dissertação na propagação do som, e a 1727 incorporou a competição premiada do problema da Academia de Paris, onde o problema do ano era encontrar a melhor maneira de colocar os mastros num navio. Ganhou o segundo lugar, perdendo para Pierre Bouguer, mais tarde conhecido como “o pai da arquitetura naval”. Euler, entretanto, ganharia o prêmio anual 12 vezes.

2.2

...

Baixar como (para membros premium)  txt (7 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com