Matematica Finanaceira
Trabalho Universitário: Matematica Finanaceira. Pesquise 862.000+ trabalhos acadêmicosPor: jeancarlos179 • 23/5/2014 • 631 Palavras (3 Páginas) • 415 Visualizações
ros compostos[editar | editar código-fonte]
Ver artigo principal: Juro
Em geral, os problemas tratados pela matemática financeira consideram o regime de juros compostos ao invés de juros simples. Nesse regime, a fórmula usada é:
FV=PV(1+i)^n,
ou, invertendo os termos,
PV=\frac{FV} {(1+i)^n\,},
onde
FV: Valor Futuro (do inglês Future Value)
PV: Valor Presente (do inglês Present Value)
i: Taxa de juros (do inglês Interest Rate)
n: Número de períodos
Fórmulas e aplicações[editar | editar código-fonte]
Número fixo de pagamentos de mesmo valor[editar | editar código-fonte]
Fluxo financeiro de um investimento (PV) com número fixo (n) de pagamentos de mesmo valor (pmt)
Esse pode ser o caso de financiamento de um bem de consumo, como o exemplo descrito na seção Exemplo de aplicação acima.
O valor pmt de cada parcela (ou pagamento periódico) pode ser considerado como o Valor Futuro (FV) relativo a essa parcela. Portanto, a parcela do 3º mês, por exemplo, pode ser trazida a Valor Presente através da seguinte fórmula:
PV_3=\frac{pmt}{(1+i)^3\,}
Nesse caso, o Valor Presente (PV) total é a soma dos "Valores Presentes" de todas as parcelas:
PV=\sum_{k=1}^{n}\frac{pmt}{(1+i)^k\,}
Aplicando a fórmula da soma dos termos de uma progressão geométrica, chega-se a:
PV=\frac{pmt}{i}\left(1-\frac{1}{(1+i)^n}\right)
ou, invertendo os termos,
pmt=\frac{PV i}{1 - \frac{1}{\left(1 + i \right) ^n}}
Esse exemplo considera que o primeiro pagamento ocorre 1 período depois do primeiro fluxo. Ou seja, entre PV e pmt_1 existe um período. Caso o primeiro pagamento ocorra no período 0 (zero) ou depois de 1 período, a fórmula precisa ser adaptada.
Número infinito de pagamentos de mesmo valor[editar | editar código-fonte]
Fluxo financeiro de um investimento (PV) com número infinito de pagamentos de mesmo valor (pmt)
Esse pode ser o caso de investimento que remunera um valor constante todo período, como, por exemplo, um título pré-fixado de dívida do governo.
Da mesma forma como o exemplo anterior, o Valor Presente (PV) total é a soma dos "Valores Presentes" de todas as parcelas, porém, considerando n=\infty. Aplicando a fórmula da soma dos infinitos termos de uma progressão geométrica, chega-se a:
PV=\frac{pmt}{i}
Pagamentos não periódicos ou de valores diferentes[editar | editar código-fonte]
No caso de pagamentos diferentes em cada período, não é possível fazer essas simplificações. É necessário somar o Valor Presente de cada pagamento.
Avaliação financeira de projetos[editar | editar código-fonte]
Projetos de investimento, como a abertura de
...