Representação gráfica de funções 1-o grau
Artigo: Representação gráfica de funções 1-o grau. Pesquise 862.000+ trabalhos acadêmicosPor: patigremio • 13/5/2013 • Artigo • 739 Palavras (3 Páginas) • 461 Visualizações
Função do 1º grau: “Considerando x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função. A lei de formação, é a seguinte: y = ax + b, onde a e b são números reais e a ≠(diferente) 0(zero).
A representação gráfica de uma função do 1º grau é uma reta. Analisando a lei de formação y = ax + b, notamos a dependência entre x e y, e identificamos dois números: a e b. Eles são os coeficientes da função, o valor de a indica se a função é crescente ou decrescente e o valor de b indica o ponto de intersecção da função com o eixo y no plano cartesiano(gráfico).”
Função composta: As funções correspondem a uma lei de proporcionalidade entre grandezas. A função composta é utilizada quando é possível relacionar mais de duas grandezas através de uma mesma função. A função composta pode ser entendida pela determinação de uma função C, formada pela junção das funções A e B..
Função Racional: Em matemática, uma função racional é uma razão de polinômios. Para uma simples variável x, uma típica função racional é, portanto : Função é igual a preço sobre quantidade. Do ponto de vista matemático, um polinômio é primeiramente uma expressão formal, e somente depois uma função ( em um dado domínio) a despeito do nome, o mesmo é igualmente verdadeiro para funções racionais.
Função Exponencial: Principais características: A parte variável representada por “x “se encontra no expoente”. A lei de formação de uma função exponencial indica que a base elevada ao expoente “x” precisa ser maior que zero e diferente de um.É utilizada na representação de situações em que a taxa de variação é considerada grande.
Passo 2
Atividade 1: R(x)= Pm.Qm+Pt.Qt.Pn+Pf.Gf
R= 200.180+200.200+180.140+130.60
R= 36000+40000+21000+7800
R= 104800,00
VM(x)= R/N= 104800/580= 180,69
GRÁFICO
ETAPA 3
Passo 1
Passo 2
Passo 3
Passo 4
Para o pagamento do financiamento para a compra dos computadores, no valor de R$ 54.000,00 com taxa de 1% ao mês com prazo de 2 a 24 prestações. Utilizando a fórmula, considerando R=valor da prestação; P=valor do empréstimo; i=taxa de juro; n=número de prestações:
R=P*i*(1+i)n
[(1+i)n-1]
Em 2 prestações
R=54000.0,01(1+0.01)2
[(1+0,01)2-1]
R=540(1,0201)
[(1,0201-1)]
R=550,85
0,0201
R=27405,67
Em 5 prestações
R=54000.0,01(1+0.01)5
[(1+0,01)5-1]
R=540(1,05101005)
[(1,05101005-1)]
R=567,55
0,05101005
R=11126,15
Em 10 prestações
R=54000.0,01(1+0.01)10
[(1+0,01)10-1]
R=540(1,104622125)
[(1,1046221255-1)]
R=596,50
0,1046221255
R=5701,43
Em 20 prestações
R=54000.0,01(1+0.01)20
[(1+0,01)20-1]
R=540(1,22019004)
...