Atps Calculo 3
Monografias: Atps Calculo 3. Pesquise 862.000+ trabalhos acadêmicosPor: vanwel2010 • 1/4/2014 • 1.657 Palavras (7 Páginas) • 263 Visualizações
Definição: Integral.
O cálculo diferencial e integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido inicialmente por Isaac Newton e Gottfried Leibniz em trabalhos independentes, o cálculo diferencial ajuda em vários conceitos e definições desde a matemática, química, física clássica e até a física moderna. O estudante de cálculo deve ter um conhecimento em certas áreas da matemática, como funções, pois é a base do cálculo. O cálculo tem inicialmente três "operações-base", ou seja, possui áreas iniciais como o cálculo de limites, o cálculo de derivadas de funções e finalmente a integral de funções que também pode ser chamada de antiderivada, uma vez que a integral é um processo que inverte a derivada de funções.
Uma vez que podemos analisar a variação de determinados valores em uma função, como poderíamos reverter a análise, ou seja, se é possível criar uma função a partir de outra utilizando a diferenciação, o que teríamos se fizéssemos a operação inversa? Esta é uma questão que nos leva a mais um método do cálculo, a integração é uma forma de reverter a derivação, com ela temos um artifício para recuperar a função original a partir da sua derivada. Outra característica interessante da integral é que o valor numérico de uma integral definida exatamente em um intervalo é correspondente ao valor da área do desenho delimitado pela curva da função e o eixo x (abscissas). Vamos analisar em seguida como funciona o mecanismo básico de integração e nos capítulos seguintes nos aprofundaremos no tema, que é bastante vasto.
Como procedemos para reverter a derivação? O princípio é verificado através da análise da inversão, da seguinte forma:
Considere a função cuja derivada , então dizemos que é a antiderivada de , a nossa primeira constatação é que a função primitiva inclui uma constante, que durante o processo de derivação é descartada, já que sua derivada é nula, se fizermos o processo inverso para obter a função original teríamos para operar e consegui-lo, isso nos leva a uma indefinição da função obtida através da antidiferenciação, a menos que conheçamos o valor da constante. Se quisermos obter a função original teríamos que operar e zero, o primeiro requisito é, a princípio, plausível de ser conseguido, porém operar zero para obtenção de qualquer constante parece algo não concebível.
Podemos então dizer:
A antidiferenciação opera apenas os processos para dedução de um esboço da função, o que chamamos de fórmula geral, no formato: .
Ao operar a inversa da derivada, podemos fazer a análise com as diferenciais, ou seja, considere a função , então temos: , o que nos leva a algo muito interessante:
O que nos lembra:
Temos ainda que , fazendo-nos deduzir que precisamos operar:
Para encontrar y.
Esta operação é chamada de antidiferencial e é simbolizada por:
Onde (f) é a função e (d) é a diferencial da variável independente.
De forma mais completa a antidiferencial da função é:
Onde C é a constante que define a função primitiva.
Operações Básicas:
A antidiferenciação é uma operação que tende a ser complicada na maioria das funções, ao longo do nosso estudo veremos métodos para simplificar o processo, porém existem formas de funções que não podem ser operadas nesse processo. Algumas das regras básicas para operação de antidiferenciais serão abordadas nas seções subseqüentes, outras regras serão abordadas nos próximos capítulos. Devido a complexidade que envolve o processo, muitos dos métodos necessitam de alguma regra que ainda não estudamos; para não colocar questões que não possam ser esclarecidas neste capítulo teremos que deixá-las para o momento oportuno, quando todos os elementos necessários para a abordagem do assunto estejam bem claros.
Diferenciais
Com C constante.
Comprovação:
De fato se :
Constantes
Comprovação:
Se fizermos: , teremos:
Adição
Comprovação:
Se é o resultado da soma de duas antidiferenciais, logo:
Temos que admitir que e são diferenciais;
A soma de diferenciais admite que:
Se e , temos:
Sendo, portanto, possível fazer:
Além disso: Se então, podemos fazer:
Variável com expoente constante (antidiferencial)
Onde C é constante.
Comprovação:
Regra da cadeia para antidiferenciais
Comprovação:
Uma vez que:
, temos:
O que nos possibilita operar, por substituição:
, obtendo:
...