TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Função de 2° grau na Administração

Por:   •  8/5/2015  •  Trabalho acadêmico  •  442 Palavras (2 Páginas)  •  257 Visualizações

Página 1 de 2

Uma função para ser do 2º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do 2º grau é que o valor de a, da forma geral, não pode ser igual a zero.

Então, podemos dizer que a definição de função do 2º grau é: f: R→ R definida por f(x) = ax2 + bx + c, com a Є R* e b e c Є R.

Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta.

Veja alguns exemplos de Função do 2º grau:

f(x) = 5x2 – 2x + 8; a = 5, b = – 2 e c = 8 (Completa)

f(x) = x2 – 2x; a = 1, b = – 2 e c = 0 (Incompleta)

f(x) = – x2; a = –1, b = 0 e c = 0 (Incompleta)

Toda função do 2º grau também terá domínio, imagem e contradomínio.

Exemplo 1

A função do 2º grau f(x) = – x2 + x – 2, pode ser representada por y = – x2 + x – 2. Para acharmos o seu domínio e contradomínio, devemos primeiro estipular alguns valores para x. Vamos dizer que x = –3; –2; –1; 0; 1; 2. Para cada valor de x teremos um valor em y, veja:

x = – 3

y = – (–3)2 + (–3) – 2

y = –9 – 3 – 2

y = – 12 – 2

y = – 14

x = – 2

y = –( – 2)2 + (– 2) – 2

y = – 4 – 2 – 2

y = – 8

x = –1

y = – (–1)2 + (–1) – 2

y = – 1 – 1 – 2

y = – 2 – 2

y = – 4

x = 0

y = 02 + 0 – 2

y = – 2

x = 1

y = – 12 + 1 – 2

y = – 1 + 1 – 2

y = – 2

x = 2

y = – 22 + 2 – 2

y = – 4 + 2 – 2

y = – 4

...

Baixar como (para membros premium)  txt (1.7 Kb)   pdf (40.1 Kb)   docx (11.2 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com