TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Atps Calculo

Exames: Atps Calculo. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  15/11/2013  •  814 Palavras (4 Páginas)  •  317 Visualizações

Página 1 de 4

ETAPA 1

PASSO 1:

O surgimento do Cálculo Diferencial Integral

O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.

O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.

Historicamente, Newton foi o primeiro a aplicar o cálculo à física, ao passo que Leibniz desenvolveu a notação utilizada até os dias de hoje. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.

PASSO 2

DESAFIO A

Qual das alternativas representa a integral indefinida de : ( a33+3a3+3 a )

( a33+3a3+3 a )=

F(a)=13a3+31a3+31a=

F(a)=13.a44+31.a-2-2+3.lna=

F(a)=a412-32a2+3.lna+c

A alternativa correta correspondente ao desafio A é a ( b )

DESAFIO B

Suponha que o processo de perfuração de um poço de petróleo tenha um custo fixo de U$ 10.000 e um custo marginal de C’(q) = 1000 + 50q dólares por pé, onde q é a profundidade em pés. Sabendo que C (0) = 10.000, a alternativa que expressa C(q), o custo total para se perfurar q pés, é:

1000dq+50d.dq=

C(q)=1000q+50q22=

C(q)=1000q+25q2+c=

C(q)=1000+25q2+10000

A alternativa correta correspondente ao desafio B é a ( a )

DESAFIO C

No inicio dos anos 90, a taxa de consumo mundial de petróleo cresceu exponencialmente. Seja C(t) a taxa de consumo de petróleo no instante t, onde t é o número de anos contados a partir do inicio de 1990. Um modelo aproximado para C(t) é dado por: C(t) = 16,1.e0,07t. Qual das alternativas responde corretamente a quantidade de petróleo consumida entre 1992 e 1994?

Para 1992 Para 1994

Ct=16,1.e0,07t= Ct=16,1.e0,07t=

C2= 16,1.e0,07.2= C2=16,1.e0,07.4=

C2=18,52 bilhões C2=21,30 bilhões

18,52 bilhões + 21,30 bilhões = 39,76 bilhões

A alternativa correta correspondente ao desafio C é a ( c )

DESAFIO D

A área sob a curva y=ex2 de x=-3 a x=2 é dada por:

-32ex2dx

u=x2

du= ddxx.2-x.ddx222=24dx=

du=12dx=

2du=dx

-32eu2.du=

2-32eudu=2.ex22-3=2.e22-2.e-32=5,43-0,44=4,99

A alternativa correta correspondente ao desafio D é a ( a )

PASSO 3

Para o Desafio A:

A resposta que obtemos nos cálculos executados para esse desafio foi a foi a alternativa (b) que direciona a associação ao número 3, para execução dos cálculos usamos os conhecimentos com integral indefinida aprendido em aula, no desafio A do passo anterior mostra com clareza as passagens matemáticas utilizadas, assim chegando na resposta exata.

Para o Desafio B:

A resposta que obtemos nos cálculos executados para esse desafio foi a foi a alternativa (a) que direciona a associação ao número 0, o desenvolvimento deste desafio utilizamos uma ferramenta estudada na aula de Calculo II onde se falava de custo marginal, juntando esse conhecimento com as regras para integração chegamos num resultado final, onde obtemos uma formula que mostrará o custo final conforme a variação da medida da perfuração.

Para o Desafio C:

A resposta que obtemos nos cálculos executados para esse desafio foi a foi a alternativa (c) que direciona a associação ao número 1, usando a formula dada no desafio C estabelecemos duas soluções usando o algarismo final dos anos citados no desafio, no caso de 1992 usamos o número 2, e no caso de 1994 usamos o número 4, quando esses valores foram substituídos nas formulas gerou um resultado que ao somados mostrou a quantidade de petróleo consumida no período de 1992 a 1994.

Para o desafio D:

A resposta que obtemos nos cálculos executados para esse desafio foi a foi a alternativa (a) que direciona a associação ao número 9, nesse desafio foi solicitado que fizéssemos um cálculo para descobrir qual valor era dada a área da curva, usamos a regrada substituição para integração, onde chegamos ao valor final desejado de 4,99 correspondente a alternativa (a).

PASSO 4

A sequência dos numero que encontramos foi 3019, portanto esse resultado é quantidade de petróleo que poderá ser extraído mensalmente visando os cálculos dos quatros primeiros desafios que compõe a nossa ATPS.

Etapa 3

Passo 1:

Conhecer sobre área é conhecer sobre o espaço que podemos preencher em regiões poligonais convexas – qualquer segmento de reta com extremidades na região só terá pontos pertencentes a esta. O cálculo de áreas tem muita aplicabilidade em diferentes momentos, seja em atividades puramente cognitivas, ou até mesmo trabalhistas. Um exemplo de profissional que faz uso dessa ferramenta para tornar possível o desempenho do seu trabalho é o pedreiro. É através do conhecimento de área que é possível estimar a quantidade de cerâmica necessária para pavimentar um determinado cômodo de uma casa, por exemplo.

...

Baixar como  txt (5.2 Kb)  
Continuar por mais 3 páginas »