Atps Calculo
Monografias: Atps Calculo. Pesquise 861.000+ trabalhos acadêmicosPor: brufidelis • 4/6/2013 • 2.258 Palavras (10 Páginas) • 376 Visualizações
ETAPA 1 (tempo para realização: 5 horas )
Aula-tema: Conceito de Derivada e Regras de Derivação.
Essa atividade é importante para poder verificar a aplicação da derivada inserida em
conceitos básicos da física. A noção intuitiva de movimento, velocidade, aceleração é algo
intrínseco a todos, já que é algo natural. No entanto, quando visto sob um olhar crítico
científico, pode se observar as leis da física, em que as operações matemáticas e regras de
derivação básica estão intimamente ligadas a essas leis.
Para realizá-la, devem ser seguidos os passos descritos.
Tânia Mara Amorim Faculdade Anhanguera de Sorocaba
Engenharia de Produção - 3ª Série - Cálculo II
PASSOS
Passo 1 (Aluno)
Pesquisar o conceito de velocidade instantânea a partir do limite, com .
Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o
significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o
conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a
derivada da função espaço.
Dar um exemplo, mostrando a função velocidade como derivada da função do espaço,
utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que
compõe o RA dos alunos integrantes do grupo.
Bibliografia complementar
• HALLIDAY, David; RESNICK, Robert. Física I. 7 ed. Rio de Janeiro: LTC, 2007.
Sites sugeridos para pesquisa
• Velocidade Instantânea. Disponível em:
<https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B9WAT
R68YYLOMmJlM2RmNmItOGRiMy00ZWU1LTg4YTctODEzMWJmMDg4MzAy&hl=
pt_BR>. Acesso: em 03 out. 2011
Passo 2 (Aluno)
Montar uma tabela, usando seu exemplo acima, com os cálculos e plote num gráfico as
funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função
você tem e calcular a variação do espaço percorrido e a variação de velocidade para o
intervalo dado.
Calcular a área formada pela função da velocidade, para o intervalo dado acima.
Passo 3 (Equipe)
Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como
sendo a derivada da função velocidade.
Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que
é a aceleração é a derivada segunda.
Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de
derivação aplicada a sua função espaço e função velocidade.
Bibliografia complementar
• HALLIDAY, David; RESNICK, Robert. Física I. 7 ed. Rio de Janeiro: LTC, 2007.
Passo 4 (Equipe)
Plotar num gráfico sua função a(m/s2) x t(s) para um intervalo de 0 a 5 segundos e dizer que
tipo de função você tem.
Tânia Mara Amorim Faculdade Anhanguera de Sorocaba
Engenharia de Produção - 3ª Série - Cálculo II
Calcular a área formada pela função aceleração para o intervalo dado acima e comparar o
resultado obtido com o cálculo da variação de velocidade realizado no passo 2, subitem 2.1 e
fazer uma análise a esse respeito.
Elaborar um relatório com os resultados obtidos de todos os passos realizados nessa etapa 1
para entregar ao professor.
ETAPA 2 (tempo para realização: 5 horas )
Aula-tema: Conceito de Derivada e Regras de Derivação.
Essa atividade é importante para poder verificar a aplicação da derivada inserida em
...