Equação De Bernoulli
Exames: Equação De Bernoulli. Pesquise 862.000+ trabalhos acadêmicosPor: lsp13 • 2/10/2014 • 499 Palavras (2 Páginas) • 242 Visualizações
Uma segunda forma, mais geral, da equação de Bernoulli pode ser escrita para fluidos compressíveis:
{ v^2 \over 2 } + \phi + w = \mbox{constante}
Aqui, \phi é a energia potencial gravitacional por unidade de massa, que vale apenas \phi = gh no caso de um campo gravitacional uniforme, e w é a entalpia do fluido por unidade de massa. Observe que w = \epsilon + {p \over \rho} onde \epsilon é a energia termodinâmica do fluido por unidade de massa, também conhecida como energia interna específica ou sie.
A constante no lado direito da equação é frequentemente chamada de constante de Bernoulli e indicada pela letra "b". Para o escoamento adiabático sem viscosidade e sem nenhuma fonte adicional de energia, "b" é constante ao longo de todo o escoamento. Mesmo nos casos em que "b" varia ao longo do conduto, a constante ainda prova-se bastante útil, porque está relacionada com a carga de pressão no fluido.
Quando uma onda de choque está presente, deve-se notar que um referencial move-se conjuntamente (comove-se) com uma onda de choque, muitos dos parâmetros envolvidos na equação de Bernoulli sofrem grandes modificações ao passar pela onda de choque. A constante de Bernoulli, porém, não se altera. A única exceção a essa regra são os choques radioativos, que violam as convenções que levam à equação de Bernoulli, como a falta de vazões ou fontes de energia.
Dedução
Um duto com fluido movendo-se para a direita. Estão indicados a pressão, a altura, a velocidade, a distância (s) e a área da seção transversal.
Vamos começar com a equação de Bernoulli para fluidos incompressíveis.
A equação pode ser obtida pela integração das equações de Euler, ou pela aplicação da lei da conservação da energia em duas seções ao longo da corrente, e desprezando a viscosidade, a compressibilidade e os efeitos térmicos. Pode-se dizer que
o trabalho mecânico feito pelas forças no fluido + redução na energia potencial = aumento na energia cinética.
O trabalho feito pelas forças é
F_{1} s_{1}-F_{2} s_{2}=p_{1} A_{1} v_ {1}\Delta t-p_{2} A_{2} v_{2}\Delta t. \;
A diminuição da energia potencial é
m g h_{1}-m g h_{2}=\rho g A _{1} v_{1}\Delta t h_{1}-\rho g A_{2} v_{2} \Delta t h_{2}. \;
O aumento na energia cinética é
\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=\frac{1}{2}\rho A_{2} v_{2}\Delta t v_{2} ^{2}-\frac{1}{2}\rho A_{1} v_{1}\Delta t v_{1}^{2}.
Juntando tudo, tem-se que
p_{1} A_{1} v_{1}\Delta t-p_{2} A_{2} v_{2}\Delta t+\rho g A_{1} v_{1}\Delta t h_{1}-\rho g A_{2} v_{2}\Delta t h_{2}=\frac{1}{2}\rho A_{2} v_{2}\Delta t v_{2}^{2}-\frac{1}{2}\rho A_{1} v_{1}\Delta t v_{1}^{2}
ou
\frac{\rho A_{1} v_{1}\Delta t v_{1}^{ 2}}{2}+\rho g A_{1}
...