Função exponencial
Seminário: Função exponencial. Pesquise 862.000+ trabalhos acadêmicosPor: igorfelipe_93 • 21/4/2014 • Seminário • 400 Palavras (2 Páginas) • 203 Visualizações
Chama-se função exponencial a função ƒ:R→R+* tal que ƒ(x)= ax em que a ∈ R, 0<a≠1.
O a é chamado de base e o x de expoente.
A função pode ser crescente ou decrescente a depender do valor da base. Se a base a for > 1, a função é crescente; Se a base a for um número real entre 1 e 0, (0<a< 1) a função é decrescente.
Índice [esconder]
1 Propriedades da Função Exponencial
1.1 Função exponencial e equações diferenciais
1.2 Função exponencial no plano complexo
1.3 Função exponencial para matrizes e álgebras de Banach
1.4 Mapa exponencial nas álgebras de Lie
2 Ver também
Propriedades da Função Exponencial[editar | editar código-fonte]
Sendo a > 0 e a ≠ 1, tem-se que ax=at↔ x = t;
A função exponencial ƒ(x)=ax é crescente em todo seu domínio se, e somente se, a>1;
A função exponencial ƒ(x)=ax é decrescente em todo seu domínio se, e somente se, 0<a<1;
Toda função exponencial, isto é, ƒ(x)=ax com a ∈ R+* e a ≠ 1 é bijetora;
A função exponencial é uma das mais importantes funções da matemática. Descrita como ex (onde e é a constante matemática neperiana, base do logarítmo neperiano), pode ser definida de duas maneiras equivalentes: a primeira, como uma série infinita; a segunda, como limite de uma seqüência:
A função exponencial é achatada para x negativos, e cresce rapidamente para x positivos.
A curva ex jamais toca o eixo x, embora apresente tendência a se aproximar deste. Note que sua assíntota é y=0.
e^x = \sum_{n = 0}^{\infty} {x^n \over n!} = 1 + x + {x^2 \over 2!} + {x^3 \over 3!} + {x^4 \over 4!} + \cdots
e^x = \lim_{n \to \infty} \left( 1 + {x \over n} \right)^n
Aqui, n! corresponde ao fatorial de n e x é qualquer número real ou complexo.
O valor de e^1 é aproximadamente 2{.}718281828
Se x é real, então ex é sempre positivo e crescente. Conseqüentemente, sua função inversa, o logarítmo neperiano, ln(x), é definida para qualquer valor positivo de x. Usando o logarítmo neperiano, pode-se definir funções exponenciais mais genéricas, como abaixo:
a^x = e^{x \ln a}
Para todo a > 0 e x \in \mathbb{R}.
A função exponencial também gera funções trigonométricas (como pode ser visto na equação de Euler para análises complexas), e as funções hiperbólicas. Então, tem-se que qualquer função elementar, exceto as polinomiais são criadas a partir da função exponencial.
As funções exponenciais "transitam entre a adição e a multiplicação" como
...