Numeros racionais
Por: ateixeira657 • 11/5/2015 • Trabalho acadêmico • 2.316 Palavras (10 Páginas) • 473 Visualizações
NÚMEROS RACIONAIS
CONJUNTO DO NÚMERO RACIONAIS
CANJUNTO DOS NÚMEROS RACIONAIS RELATIVOS
Chama-se número racional todo o número que pode ser escrito em forma de fração,
São exemplos de números racionais;
“ Os números fracionários positivos;
+ 5/7, +1/3, +7/2, +9/4
“Os números fracionários negativos;
-5/7, -1/3, -7/2, --9/4
É concluir que todo número inteiro é também racional,
Veja:
a) O número 8 pode ser escrito como 8/1, logo 8 também é um número racional.
b) O número inteiro (-8) pode ser escrito como -8/1, logo (-8) também é um número racional
c) O número inteiro 0 pode ser escrito como 0/1, logo 0 é também um número racional.
O conjunto dos números racionais é representado pela letra Q sendo formado pelos números inteiros e pelos números fracionários.
CONJUNTO Q
a) números inteiros positivos e negativos
b) número zero
c) números fracionários , positivos e negativos
CONVEM DESTACAR QUE:
1) O conjunto Q é infinito.
2) Os números racionais positivos podem ser escritos sem o sinal de +
Exemplo:
+3/7 escreve-se simplismente 3/7
3) Números opostos ou simétricos
Exemplos:
a) +3/8 e -3/8 são opostos
b) -1/2 e +1/2 são opostos
4) Regra de sinais
A indicação de uma divisão pode ser feita por meio de uma fração. Então, para saber o sinal do número racional, basta aplicar a regra de sinais da divisão.
Exemplos:
a) (-3) : (+5) = -3/+5 = -3/5
b) (-8) : (-7) = -8/-7 = +8/7 = 8/7
NÚMEROS DECIMAIS
Um número racional também pode ser representado por um número exato ou periódico.
Exemplos:
a) 7/2 = 3,5
b) -4/5 = -0,8
c) 1/3 = 0,333.......
d) 4/9 = 0,444......
REPRESENTAÇÃO GEOMÉTRICA
Observe que os números racionais podem ser representados por pontos de uma reta, usando-se o mesmo processo de representação dos inteiros.
_-3___/____-2___/____-1_______0__/_____1_____/__2_______3__
.....-5/2........-3/2...................1/5.............5/3
Os pontos que estão à direita do zero chamam-se positivos.
Os negativos estão à esquerda do zero
Dados dois números quaisquer, o que está à direita é maior deles, e o que está a esquerda, o menor deles.
Na figura vemos que :
a) 1/5 > -3/2
b) -5/2 < -3/2
ADIÇÃO E SUBTRAÇÃO EM Q
Para as operações com números racionais relativos são validas as regras operatórias das frações e dos números inteiros relativos.
ADIÇÃO
Para adicionarmos números racionais relativos (na forma de fração) procedemos do seguinte modo:
1) Reduzimos (se necessario) as frações dadas ao mesmo denominador positivo.
2) Somamos os numeradores de acordo com a regra de sinais da adição de inteiros.
EXEMPLOS:
a) (-2/3) + (+1/2) = -2/3 + ½ = (-4 + 3) / 6 = -1/6
b) (+3/4) + (-1/2) = ¾ - ½ = (3-2)/ 4 = ¼
c) (-4/5) + (-1/2) = -4/5 -1/2 = (-8 -5) / 10 = -13/10
EXERCÍCIOS
1) Efetue as adições:
a) (+3/5) + (+1/2) = (R: 11/10)
b) (-2/3) + (+5/4) = (R: 7/12)
c) (-4/9) + (+2/3) = (R: 2/9)
d) (-3/7) + (+2/9) = (R: -13/63)
e) (-1/8) + (-7/8) = (R: -1)
f) (-1/3) + (-1/5) = (R: -8/15)
g) (-1/8) + (5/4) = (R: 9/8)
h) (+1/5) + ( +3/5) = (R: 4/5)
2) Efetue as adições:
a) (-2/5) + 3 = (R: 13/5)
b) (-1/6) + (+2) = (R: 11/6)
c) (-5/3) + (+1) = (R: -2/3)
d) (-4) + (-1/2) = (R: -9/2)
e) (-0,2) + (-1/5) = (R: -2/5)
f) (+0,4) + (+3/5) = (R: 1)
g) (-0,5) + (+0,7) = (R: 1/5 ou 0,2)
h) (-02) + (-1/2) = (R: -7/10)
3) Efetue as seguintes adições:
a) (+5/8) + (+1/2) + ( -2/15) = (R:119/120)
b) (+1/2) + (-1/3) + (+1/5) = (R:11/30)
c) (-1/2) + (-4/10) + (+1/5) = (R: -7/10)
d) (-3/5) + (+2) + (-1/3) = (R: 16/15)
SUBTRAÇÃO
Para encontrarmos a diferença entre dois números racionais, somamos o primeiro com o oposto do segundo
Exemplos
a) (+1/2) – (+1/4) = ½ -1/4 = 2/4 -1/4 = ¼
b) (-4/5) – (-1/2) = -4/5 + ½ = -8/10 + 5/10 = -3/10
Exercícios
1) Efetue as subtrações:
a) (+5/7) – (+2/3) = (R: 1/21)
b) (+2/3) – (+1/2) = (R: 1/6)
c) (+2/3) – (+4/5) = (R: -2/15)
d) (-7/8) – (-3/4) = (R: -1/8)
e) (-2/5) – (-1/4) = (R: -3/20)
f) (-1/2) – (+5/8) = (R: -9/8)
g) (+2/3) – ( (+1/5) = (R: 7/15)
h) (-2/5) – ( +1/2) = (R: -9/10)
2) Efetue as subtrações:
a) (+1/2) – (+5) = (R: -9/2)
b) (+5/7) – (+1) = (R: -2/7)
c) 0 – ( -3/7) = (R: 3/7)
d) (-4) – (-1/2) = (R: -7/2)
e) (+0,3) – (-1/5) = (R: ½)
f) (+0,7) – (-1/3) = 31/30
3) Calcule
a) -1 – ¾ = (R: -7/4)
b) (-3/5) + (1/2) = (R: -1/10)
c) 2 – ½ -1/4 = (R: 5/4)d) -3 -4/5 + ½ = (R: -33/10)
e) 7/3 + 2 -1/4 = (R: 49/12)
f) -3/2 + 1/6 + 2 -2/3 = (R: 0)
g) 1 – ½ + ¼ - 1/8 = (R:5/8)
h) 0,2 + ¾ + ½ - ¼ = (R:6/5)
i) ½ + (-0,3) + 1/6 = (R:11/30)
j) 1/5 + 1/25 + (-0,6) = (R: 1/10)
4) Calcule o valor de cada expressão:
a) 3/5 – 1 – 2/5 = (R: -4/5)
b) 3/5 – 0,2 + 1/10 = (R: ½)
c) -3 – 2 – 4/3 = (R: -19/3)
d) 4 – 1/10 + 2/5= (R: 43/10)
e) 2/3 – ½ -5 = (R: 29/6)
f) -5/12 – 1/12 + 2/3 = (R: 1/6)
5) Calcule o valor de cada expressões:
a) -1/3 + 2/9 – 4/3 = (R: -13/9)
b) -4 + ½ - 1/6 = (R:-11/3)
c) 0,3 + ½ - ¾ = (R: 1/20)
d) 1 + ¼ - 3/2 + 5/8 = (R: 3/8)
e) 0,1 + 3/2 – ¼ + 2 = (R: 67/20)
f) ¾ + 0,2 – 5/2 – 0,5 = ( R: - 41/20)
6) Calcule o valor de cada expressão
a) 1/2 – (-3/5) + 7/10 = (R: 9/5)
b) -(-1) – (- 4/3) + 5/6 = (R: 19/6)
c) 2 – ( - 2/3 – ¼) + 0,1 = (R: 181/60)d) ( -1 + ½) – ( -1/6 + 2/3) = (R: -1)
e) 2 – [ 3/5 – ( -1/2 + ¼ ) ] = (R: 23/20)
f) 3 – [ -1/2 – (0,1 + ¼ )] = (R: 77/20)
g) (1/3 + ½) – (5/6.- ¾) = (R: ¾)
h) (5/2 – 1/3 – ¾ ) – (1/2 + 1) = (R: -1/12)
i) (1/4 + ½ + 2 ) + (-1/6 + 2/3) = (R: 13/4)
j) (-0,3 + 0,5 ) – ( -2 - 4/5) = (R: 3)
k) (1/6 + 2/3) – (4/10 – 3/5) + 1/3 = (R: 41/30)
l) 0,2 + (2/3 – ¼) – ( -7/12 + 4/3) = (R: -2/15)
m) (1 – ¼) + (2 + ½) – (1 - 1/3) – ( 2 – ¼ ) = (R: 5/6 )
...