TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Calculo II

Artigo: Calculo II. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  10/4/2014  •  390 Palavras (2 Páginas)  •  191 Visualizações

Página 1 de 2

Conceito de Derivada e Regras de Derivação

Passo 1 (Pesquisar sobre velocidade instantânea)

Pesquisar o conceito de velocidade instantânea a partir do limite, com .

Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.

Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.

Já observamos que o conceito de velocidade média está associado a dois instantes de tempo. Por exemplo, t1 e t2. E escrevemos v (t1,t2) para o módulo dessa velocidade média.

Por outro lado, concluímos que o módulo da velocidade média entre esses instantes de tempo pode ser obtido a partir do segmento de reta secante ao gráfico da posição em função do tempo. Esse segmento de reta deve ligar os pontos A e B do gráfico, pontos estes que correspondem aos instantes de tempo t1 e t2.

O conceito de velocidade instantânea está associado a um instante de tempo.

Por exemplo, t1. E escrevemos v (t1) para o módulo dessa velocidade instantânea. Podemos pensar que o módulo da velocidade instantânea v (t1) é o valor do módulo da velocidade média v (t1,t2) quando t2 é tomado muito próximo de t1.

Desse modo, o cálculo do módulo da velocidade instantânea v (t1) pode ser feito como o cálculo do módulo da velocidade média v (t1,t2), desde que o segmento de reta secante seja substituído por um segmento de reta tangente ao gráfico posição x tempo.

É a taxa de variação da posição de um corpo dentro de um intervalo de tempo infinitesimal (na prática, instantâneo). Define-se velocidade instantânea ou simplesmente velocidade como sendo:

Exemplo: Função x = 3t² + t3 + 2t – 4

• Velocidade no tempo 7s

x = 3t² + t³ + 2t - 4

v = dx = 3x7t2-1 + 7xt 3-1 + 7 – 0

dt

v = 21t + 2t² + 7

Se t = 2s

v = 21x2 + 2x7² + 7

v = 42 + 98 + 7

v = 147m/s

• Aceleração no tempo 10s

v = 21t + 7t² + 7

a= 21 + 2x7t²-¹ + 0

a= 21+ 14t

a= 21 + 14x10

a= 161m/s²

...

Baixar como (para membros premium)  txt (2.3 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com