Modelagem e sistemas dinamicos
Por: Vinicius Gonçalves • 29/5/2017 • Ensaio • 334 Palavras (2 Páginas) • 281 Visualizações
Trabalho
modelagem e sistemas dinâmicos
SIMULAR a curva
t=0:0.1:10; y=0.5-0.5*exp(-2*t); plot(t,y) xlabel('Tempo [seg]') ylabel('Resposta y(t)') 1-b) Usando FUNÇÃO de TRANSFERÊNCIA vs. MATLAB: num=[1]; den=[1 2]; step(num,den); % Entrada =1/s
1ª)
>> t=0:0.1:10;
>> y= 0.5-0.5*exp(-2*t);
>> plot (t,y)
>> xlabel ('tempo [seg]')
>> ylabel ('resposta y(t)')
[pic 1]
1b)
>> num=[1]
num =
1
>> den=[1 2]
den =
1 2
>> step(num,den); %entrada =1/s
>>
[pic 2]
2) questão de número 2
SIMULAR:
a=0.1 ; b=10; t=0:0.1:15; y=(2*a+b)*exp(-t)-(a+b)*exp(-2*t); plot(t,y) grid xlabel('Segundos') ylabel('Resposta y(t)') FUNÇÃO de TRANSFERÊNCIA vs. MATLAB: num=[a b+3*a]; den=[1 3 2]; impulse(num,den)
>> a=0.1;
b=10;
t= 0:0.1:15;
Y=(2*a+b)*exp(-t)-(a+b)*(-2*t);
>> plot(t,Y)
>> grid
>> xlabel('segundos')
>> ylabel ('resposta y(t)')
[pic 3]Resposta ao impulso...
>> num=[a b+3*a];
>> den= [1 3 2];
>> impulse(num,den)
[pic 4]
3)
A Resposta: y(t) , usando Matlab: b=1; k=10; m=5; num=[b k]; den=[m b k]; impulse(num,den) R= roots(den) R = -0.1000 + 1.4107i -0.1000 - 1.4107i P=poly(R) P = 1.0 0.20 2.0
>> b=1;
>> k=10;
>> m=5;
>> num= [b k];
>> den= [m b k];
>> impulse (num,den)
[pic 5]
>> R=roots(den)
R =
-0.1000 + 1.4107i
-0.1000 - 1.4107i
>> p=poly (R)
p =
1.0000 0.2000 2.0000
4) caso 1...
Resposta:
f(t) , usando MATLAB: R=[0 -1 -3]; poly(R) ans = 1 4 3 0 num=[1 2]; den=[1 4 3 0]; impulse(num,den) You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Simulando uma entrada senoidal t=0:0.1:10; u=sin(2*pi*t) lsim(num,den,u,t) Dado o sistema (caso 2) R=[-2 -2 -2 -3]; poly(R) ans = 1 9 30 44 24 num=[1]; den=[1 9 30 44 24]; impulse(num,den) hold on step(num,den) lsim(num,den,u,t)
>> r=[0 -1 -3];
>> poly(r)
ans = 1 4 3 0
>> num=[1 2];
>> den=[1 4 3 0];
>> impulse (num,den)
[pic 6]
>> T=0:0.1:10;
>> u=sin(2*pi*T);
>> lsim (num,den,u,T)
[pic 7]
b) segundo caso...
>> R=[-2 -2 -2 -3];
poly(R)
ans =
1 9 30 44 24
>> num=[1];
>> den= [1 9 30 44 24];
>> impulse (num,den)
>> hold on
>> step(num,den)
[pic 8]
[pic 9]
...