Princípios Da Estatística
Casos: Princípios Da Estatística. Pesquise 862.000+ trabalhos acadêmicosPor: Hamilton2013 • 23/12/2013 • 3.810 Palavras (16 Páginas) • 263 Visualizações
Introdução à estatística 1- Objeto da estatística Estatística é uma ciência exata que visa fornecer subsídios ao analista para coletar, organizar, resumir, analisar e apresentar dados. Trata de parâmetros extraídos da população, tais como média ou desvio padrão. A estatística fornece-nos as técnicas para extrair informação de dados, os quais são muitas vezes incompletos, na medida em que nos dão informação útil sobre o problema em estudo, sendo assim, é objetivo da Estatística extrair informação dos dados para obter uma melhor compreensão das situações que representam. Quando se aborda uma problemática envolvendo métodos estatísticos, estes devem ser utilizados mesmo antes de se recolher a amostra, isto é, deve-se planejar a experiência que nos vai permitir recolher os dados, de modo que, posteriormente, se possa extrair o máximo de informação relevante para o problema em estudo, ou seja para a população de onde os dados provêm. Quando de posse dos dados, procura-se agrupa-los e reduzi-los, sob forma de amostra, deixando de lado a aleatoriedade presente. Seguidamente o objetivo do estudo estatístico pode ser o de estimar uma quantidade ou testar uma hipótese, utilizando-se técnicas estatísticas convenientes, as quais realçam toda a potencialidade da Estatística, na medida em que vão permitir tirar conclusões acerca de uma população, baseando-se numa pequena amostra, dando-nos ainda uma medida do erro cometido. Exemplo 1: Ao chegarmos a uma churrrascaria, não precisamos comer todos os tipos de saladas, de sobremesas e de carnes disponíveis, para conseguirmos chegar a conclusão de que a comida é de boa qualidade. Basta que seja provado um tipo de cada opção para concluirmos que estamos sendo bem servidos e que a comida está dentro dos padrões. 2- População e amostra Qualquer estudo científico enfrenta o dilema de estudo da população ou da amostra. Obviamente tería-se uma precisão muito superior se fosse analisado o grupo inteiro, a população, do que uma pequena parcela representativa, denominada amostra. Observa-se que é impraticável na grande maioria dos casos, estudar-se a população em virtude de distâncias, custo, tempo, logística, entre outros motivos. A alternativa praticada nestes casos é o trabalho com uma amostra confiável. Se a amostra é confiável e proporciona inferir sobre a população, chamamos de inferência estatística. Para que a inferência seja válida, é necessária uma boa amostragem, livre de erros, tais como falta de determinação correta da população, falta de aleatoriedade e erro no dimensionamento da amostra. Quando não é possível estudar, exaustivamente, todos os elementos da população, estudam-se só alguns elementos, a que damos o nome de Amostra. Exemplo 2:
Se o objetivo for estudar o desempenho escolar de um colégio, é indicado estudar as notas dos alunos ao final do ano letivo. A partir daí poderemos facilmente obter a percentagem de aprovações e reprovações.
Agora, se entretanto o interesse for aprofundar o estudo, saber se por exemplo o sucesso no estudo pode ser atribuído para as alunas ou alunos, deveremos recolher não somente a informação relativa a nota do aluno que aprovou ou não, mas também para cada um, o sexo.
Aprovados
Masculino
28%
Feminino
13%
Total
41%
Quando a amostra não representa corretamente a população diz-se enviesada e a sua utilização pode dar origem a interpretações erradas. 3- Recenseamento Recenseamento é a contagem oficial e periódica dos indivíduos de um País, ou parte de um País. Ele abrange, no entanto, um leque mais vasto de situações. Assim, pode definir-se recenseamento do seguinte modo: Estudo científico de um universo de pessoas, instituições ou objetos físicos com o propósito de adquirir conhecimentos, observando todos os seus elementos, e fazer juízos quantitativos acerca de características importantes desse universo. 4- Estatística descritiva e estatística indutiva Sondagem Por vezes não é viável nem desejável, principalmente quando o número de elementos da população é muito elevado, inquirir todos os seus elementos sempre que se quer estudar uma ou mais características particulares dessa população. Assim surge o conceito de sondagem, que se pode tentar definir como: Estudo científico de uma parte de uma população com o objetivo de estudar atitudes, hábitos e preferências da população relativamente a acontecimentos, circunstâncias e assuntos de interesse comum. 5- Amostragem Amostragem é o processo que procura extrair da população elementos que através de cálculos probabilísticos ou não, consigam prover dados inferenciais da população-alvo.
Tipos de Amostragem
Não Probabilística
Acidental ou conveniência
Intencional
Quotas ou proporcional
Desproporcional
Probabilística
Aleatória Simples
Aleatória Estratificada
Conglomerado
Não Probabilística
A escolha de um método não probabilístico, via de regra, sempre encontrará desvantagem frente ao método probabilístico. No entanto, em alguns casos, se faz necessário a opção por este método. Fonseca (1996), alerta que não há formas de se generalizar os resultados obtidos na amostra para o todo da população quando se opta por este método de amostragem. 5.1- Acidental ou conveniência Indicada para estudos exploratórios. Freqüentemente utilizados em super mercados para testar produtos. Intencional O entrevistador dirige-se a um grupo em específico para saber sua opinião. Por exemplo, quando de um estudo sobre automóveis, o pesquisador procura apenas oficinas. 5.2- Quotas ou proporcional Na realidade, trata-se de uma variação da amostragem intencional. Necessita-se ter um prévio conhecimento da população e sua proporcionalidade. Por exemplo, deseja-se entrevistar apenas indivíduos da classe A, que representa 12% da população. Esta será a quota para o trabalho. Comumente também substratifica-se uma quota obedecendo a uma segunda proporcionalidade. 5.3- Desproporcional Muito utilizada quando a escolha da amostra for desproporcional à população. Atribui-se pesos para os dados, e assim obtém-se resultados ponderados representativos para o estudo. Exemplo 3: Em um mercado de telefones celulares,
...