TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Estatística robusta

Resenha: Estatística robusta. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  6/5/2013  •  Resenha  •  435 Palavras (2 Páginas)  •  437 Visualizações

Página 1 de 2

Ligações para estatística observacional fenômeno são coletados pelos fenômenos estatísticos.

Estatística inferencial é o conjunto de técnicas utilizadas para identificar relações entre variáveis que representem ou não relações de causa e efeito;

Estatística robusta é o conjunto de técnicas utilizadas para atenuar o efeito de outliers e preservar a forma de uma distribuição tão aderente quanto possível aos dados empíricos.

A estatística não é uma ferramenta matemática que nos informa sobre o quanto de erro nossas observações apresentam sobre a realidade pesquisada. A estatística baseia-se na medição do erro que existe entre a estimativa de quanto uma amostra representa adequadamente a população da qual foi extraída. Assim o conhecimento de teoria de conjuntos, análise combinatória e cálculo são indispensáveis para compreender como o erro se comporta e a magnitude do mesmo. É o erro (erro amostral) que define a qualidade da observação e do delineamento experimental.

A faceta dessa ferramenta mais palpável é a estatística descritiva. A descrição dos dados coletados é comumente apresentado em gráficos ou relatórios e serve tanto a prospecção de uma ou mais variáveis para posterior aplicação ou não de testes estatísticos bem como a apresentação de resultados de delineamentos experimentais.

Nós descrevemos o nosso conhecimento (e) de forma matemática e tentamos aprender mais sobre aquilo que podemos observar. Isto requer:

O planejamento das observações por forma a controlar a sua variabilidade (concepção do experimento);

Sumarização da coleção de observações;

Inferência estatística - obter um consenso sobre o que as observações nos dizem sobre o mundo que observamos.

Em algumas formas de estatística descritiva, nomeadamente mineração de dados (data mining), os segundo e terceiro passos tornam-se normalmente mais importantes que o primeiro.

A probabilidade de um evento é freqüentemente definida como um número entre zero e um. Na realidade, porém, nunca há situações que tenham probabilidades 0 ou 1. Você pode dizer que, por indução, o sol irá certamente nascer amanhã, mas, e se acontecer um evento extremamente improvável que o destrua?

Normalmente aproximamos a probabilidade de alguma coisa para cima ou para baixo porque elas são tão prováveis ou improváveis de ocorrer, que é fácil de reconhecê-las como probabilidade de um ou zero. Entretanto, isso pode levar a desentendimentos e comportamentos perigosos, porque é difícil distinguir entre, uma probabilidade de 10−4 e uma de 10−9, a despeito da grande diferença numérica entre elas. Por exemplo, se você espera atravessar uma estrada 105 ou 106 vezes na sua vida, definir o risco de atravessá-la em 10−9 significa que você está bem seguro pelo resto da sua vida. Entretanto, um risco de 10−4 significa que é bem provável que você tenha um acidente, mesmo que intuitivamente um risco de 0,01% pareça muito baixo.

...

Baixar como (para membros premium)  txt (3 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com